This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution’s administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial
Measuring 26Al and 60Fe in the Galaxy

Roland Diehl *

Max Planck Institut für extraterrestrische Physik, D-85748 Garching, Germany

Available online 4 August 2006

Abstract

With the SPI high-resolution spectrometer on INTEGRAL, new results have been obtained for long-lived radioactive 26Al and 60Fe in our Galaxy: 26Al sources apparently share the pattern of Galactic rotation in the inner Galaxy, and thus allow to estimate a total mass of 26Al in the Galaxy of 2.8×10^{4} from the measured flux. 60Fe production in massive stars is constrained by recent gamma-ray detections, and appears to be lower than predicted by standard models. We show the broader implications of these findings both for the study of our Galaxy, and for nucleosynthesis in massive stars.

© 2006 Elsevier B.V. All rights reserved.

PACS: 97.60.–s; 97.10.Cv; 26.20.+f; 26.30.+k; 95.30.Cq; 98.38.+j

Keywords: Stars: late stages of evolution; Nucleosynthesis; Nuclear processes (astrophysics); Interstellar matter: Milky Way

Contents

1. Observations with integral ... 534
2. 26Al line flux and spectroscopy .. 535
3. 60Fe production in massive stars .. 536
Acknowledgements ... 539
References ... 539

1. Observations with integral

Gamma-rays from radioactive by-products of nucleosynthesis ejecta provide a rather direct measurement of cosmic nucleosynthesis, and, in particular in the cases of long-lived isotopes such as 26Al and 60Fe, provide insights into turbulent phases of the interstellar medium around massive stars. Launches of high-resolution solid state detectors (RHESSI Lin et al., 2003; INTEGRAL/SPI Winkler et al., 2003; Vedrenne et al., 2003; Roques et al., 2003) into space have added a new quality to this field (Fig. 1): fine spectral resolution allows to better identify these nuclear lines above background, and spectroscopy can constrain the kinematics of the isotopes in the gamma-ray emission region, which is astrophysically important. One demonstrated success of such recent gamma-ray spectroscopy are the signatures of beaming in the accelerated-particle flow of solar flares (Murphy and Share, 2005; Gros et al., 2005).

In this paper, we will discuss what has been learned from the first mission years of RHESSI and INTEGRAL (see Fig. 2) with respect to nucleosynthesis sources in our Galaxy.
2. \(^{26}\text{Al}\) line flux and spectroscopy

From previous studies with the imaging Compton telescope instrument aboard the Compton Observatory (1991–2000 Diehl et al., 1995; Knödlseder et al., 1998; Plüschke et al., 2001), \(^{26}\text{Al}\) emission has been mapped all along the plane of the Galaxy. Conclusions from these imaging measurements were that massive stars dominate \(^{26}\text{Al}\) production, and that bright regions such as Cygnus suggest substantial \(^{26}\text{Al}\) ejection before the core-collapse by massive stars in the Wolf-Rayet phase (Prantzos and Diehl, 1996; Knödlseder, 1999). With respect to spectroscopy, the GRIS balloon experiment had reported (Naya, 1996) a line width of 6.4 keV, the celestial broadening of which would have corresponded to interstellar gas velocities of \(\sim 500\ \text{km s}^{-1}\). This was difficult to understand (Chen et al., 1997), further measurements of the line shape were important. Early results from RHESSI (Smith, 2003) and SPI (Diehl et al., 2003) on INTEGRAL then showed that such a spectacularly large line width was probably not real.

With 2 years of INTEGRAL/SPI observations, the measurement of \(^{26}\text{Al}\) from the inner Galaxy is sufficient (\(\sim 16\sigma\), Fig. 3) for analysis of the line shape details (Diehl et al., 2006). Modelling the shape with a convolution of the expected instrumental response and a Gaussian for a possibly broadened celestial line, it is found that any additional broadening from interstellar kinematics must be small. The quality of spectra was improved by a better determination of the SPI spectral response as it varies with time, maintained through periodic annealings against degradation of detectors (Fig. 1). This now yields an upper limit (\(2\sigma\)) of 2.8 keV on celestial line broadening (Fig. 4), constraining the line width to more moderate and plausible values of ISM velocities (1 keV corresponds to 122 km s\(^{-1}\)) (Diehl et al., 2006).

The integrated flux in the \(^{26}\text{Al}\) line obtained with INTEGRAL/SPI is \(3.3 \pm 0.4 \times 10^{-4}\ \text{ph cm}^{-2}\ \text{s}^{-1}\); this is on the low side of previous measurements (see Fig. 5).

From space-resolved spectroscopy, we could find now \(^{26}\text{Al}\) line shifts with Galactic longitude, which are consistent with expectations from differential Galactic rotation (Fig. 6) (Diehl et al., 2006). This is a remarkable finding, because it allows us to conclude that the \(^{26}\text{Al}\) sources which we see towards the inner Galaxy indeed are populating the inner Galaxy as expected from candidate source distribution models. That means that the integrated flux from this region can be taken as a representative measurement of a source population throughout the Galaxy, and hence can be converted into a total Galactic \(^{26}\text{Al}\) mass produced by massive stars assuming a steady state (i.e. the star formation and supernova rates have remained constant over the past few mission years). We derive a Galactic amount of \(2.8 \pm 0.8 M_\odot\) of \(^{26}\text{Al}\). This translates into a star formation rate of \(3 \pm 1.4 M_\odot\ \text{yr}^{-1}\) or a core-collapse supernova rate of \(1.9 \pm 1.1\ \text{events per century}\) (Diehl et al., 2006).

The global interstellar isotopic ratio \(^{26}\text{Al}/^{27}\text{Al}\) is \(8.4 \times 10^{-6}\), comparing to a value for the early solar system of \(4.5 \times 10^{-5}\). Those values are in agreement with a range of

[Fig. 1. The SPI instrument (Vedrenne et al., 2003; Roques et al., 2003) is built around a 19-element camera of Ge detectors; incident gamma-rays will cast a characteristic shadow onto this camera due to the coded mask, which allows to discriminate sources against instrumental background (left). Cosmic-ray bombardment in space destroys the charge-collection properties of the Ge detectors. Periodic annealing cures these defects, such that the high spectral resolution can be maintained over years. Shown is the degradation parameter \(\tau\) versus time in units of INTEGRAL’s 3-day orbits (Winkler et al., 2003) (right).]
alternative methods, yet, unlike those, they are derived solely from measurements of our own Galaxy, and are free from major corrections for observational biases. The price paid in our case is a rather uncertain flux measurement due to the large instrumental background, and some dependency on the assumed Galactic source distribution model; both effects add to the substantial uncertainties we have to attach to our measurement.

Our recent imaging studies with SPI, from three years of data from a survey of the inner Galaxy and Cygnus region, indicate however a consistency of the emission mapping along the plane of the Galaxy, and hence support the conclusions obtained from COMPTEL results on large-scale source distributions (Halloin et al., 2006). We hope that the INTEGRAL mission will be extended into the next decade, and thus allow us to substantially improve on the present result through improved background determination.

3. ^{60}Fe production in massive stars

Both the RHESSI and SPI instrument have reported long-awaited detections of ^{60}Fe decay gamma-rays from the inner Galaxy (Smith, 2003; Smith, 2005; Harris et al., 2005). Both are detections at the 3σ level, hence may also be interpreted as upper limits; we show those, together with
Models of massive star nucleosynthesis have long predicted (Timmes et al., 1995) that the massive stars producing ^{26}Al should also be sources of ^{60}Fe, and that the gamma-ray line intensities should be in the same order of magnitude. Predictions made 10 years ago showed a $^{60}\text{Fe}/^{26}\text{Al}$ gamma-ray intensity ratio of 0.14 (Timmes et al., 1995), while later studies showed that values above 1.0 seemed plausible (Prantzos,
Fig. 5. Comparison of the line fluxes for integrated 26Al emission from the inner Galaxy, normalized for the central radian.

Fig. 6. The space-resolved spectra of the 26Al line along the plane of the Galaxy show the expected signature from Doppler shifts of the line centroid due to Galactic rotation (Diehl et al., 2006).

Fig. 7. Constraints on the 60Fe/26Al gamma-ray intensity ratio from different gamma-ray measurements, and different evaluations of nucleosynthesis models, for comparison.
Recent re-evaluation of models for the supernova yields into the interstellar medium from a population of massive stars appear in agreement (see Fig. 7) with the recently-revised gamma-ray results (Limongi, 2006). But uncertainties are large both in theoretical models and in gamma-ray data, more homework is needed (Fig. 7).

Acknowledgements

This contribution results from the collaborative work with the members of the INTEGRAL and SPI Teams, and fruitful discussions with many other colleagues; I am grateful for their collaboration, in particular to Hubert Halloin, Karsten Kretschmar and Andrew Strong at MPE, Pierre Jean, Jürgen Knödlseder, and Jean-Pierre Roques at CESR, Trixi Wunderer at SSL Berkeley, Nikos Prantzos at IAP, Marco Limongi and Alessandro Chieffi at CNR Frascati, Dieter Hartmann at Clemson University, and Stan Woosley at UC Santa Cruz. INTEGRAL is an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The SPI spectrometer has been completed under the responsibility and leadership of CNES/ France, its anticoincidence system is supported by the German government through DLR grant 50.0G.9503.0. We acknowledge the support of INTEGRAL from ASI, CEA, CNES, DLR, ESA, INTA, NASA and OSTC.

References

Limongi, M., 2006. This volume.
Smith, D., 2005. ESA-SP 552, 45.