The GEANT Simulation Package and its use in Compton Telescope Design

R. Marc Kippen

Space and Remote Sensing Sciences Group
Los Alamos National Laboratory
The Role of Simulation in Design

Prototypes, Balloons, etc. + Simulations, Models, etc. = Scientific Mission

MEGA Prototype

MEGA Prototype Simulation Model

MEGA Flight Concept

+ Realistic component performance
- Expensive and time consuming
- Inflexible configuration
- Unrealistic environment

+ Inexpensive and comparatively rapid
+ Flexible configuration
+ Flexible environment
+ Must model the component performance

- Successful flight experiment, where:
 - Realistic estimates of performance help “sell” the mission
 - Instrument design is optimized for scientific mission and environment
Simulating Compton Telescopes

- Analytical modeling of Compton imager physical response is impractical due to complexities of geometry, scattering, and secondary production

- The most viable approach is Monte Carlo radiation transport simulation — probabilistic tracking individual “test particles”

- Other simulations important to instrument design: mechanical, thermal, electronics, etc.
Instrument Simulation Framework

Credible Simulation Requires Credible Inputs at All Levels
Monte Carlo Radiation Transport Packages

Requirements for Compton Telescope simulations:

- Detailed electromagnetic physics for direct telescope response (~1 keV – 100 MeV)
- Competent hadronic cascade physics for simulation of prompt cosmic-ray–induced background
- Isotope excitation and radioactive decay for simulations of delayed activation-induced background
- Convenient and flexible handling of complex geometry and materials for rapid design studies
- Modern, modular architecture that allows customization

The particle and nuclear physics communities have developed several “general-purpose” Monte Carlo transport packages, including:

- EGS
- FLUKA
- HETC/MORSE/MICAP
- CALOR
- MCNP/MCNPX
- GEANT
Capabilities of GEANT4

GEANT := GEometry And Tracking

Complex 3D geometry, materials, MC transport, and visualization in one package

Developed & maintained by CERN + large collaboration

Modern, object-oriented (C++) “toolkit” architecture

Comprehensive (nearly) suite of EM and hadronic physics

Straightforward installation and use on many platforms
 - Wintel, Sun, HP, Linux, Darwin

ESA Space Specific Modules

General Source Particle Module
 - Toolkit for input spatial/spectral sampling

Radioactive Decay Module
 - Provides the capability to model activation-induced background in orbit
 - Uses detailed Evaluated Nuclear Structure Data Files

Low-energy EM physics
 - Uses detailed cross sections from LLNL Evaluated Photon/Electron/Atomic Data Libraries
 - Applicable above ~250 eV
 - Ties X-ray and Gamma-ray applications

geant4.web.cern.ch

www.space.qinetiq.com
Effects of Atomic Electron Binding

\[
\left(\frac{d^2 \sigma}{d\Omega dk} \right)_i = \frac{r_o^2}{4} \left(\frac{k_f k}{k_o^2} \right) \left(\frac{k_f}{k_o} + \frac{k_o}{k_f} - \sin^2 \varphi \right) \frac{dp_z}{dk} J_i(p_z)
\]

- Suppresses forward scattering, particularly at low energies
- Suppresses total scattering probability at low energies

GEANT4 Low-energy Compton process includes these effects
Doppler Broadening Physics & Effects

For free electron: \(p_z = 0; \ E_o = m_o c^2 \)
\[
k_{\text{free}} = k_o - \frac{k_o k}{m_o c^2} (1 - \cos \varphi)
\]

For bound atomic electron:
\[
k = k_o - \frac{k_o k}{E_o} (1 - \cos \varphi) - p_z |k_o - k|
\]

Doppler broadening error:
\[
\Delta k = k - k_{\text{free}}; \quad \Delta \varphi = \varphi - \varphi_{\text{free}}
\]
GLECS & G4LECS

- GLECS = GEANT Low-Energy Compton Scattering
 - Thanks to Doug Swartz (USRA, Huntsville) for early help

- Incorporates Doppler broadening into GEANT & GEANT4

- Algorithm based closely on EGS Implementation
 - Relativistic impulse approximation (ignore atomic electron interactions)
 - Uses EPDL for total cross sections
 - Uses EPDL differential cross sections (scattering form factors)
 - Uses shellwise Compton profiles (Biggs, Mendlesohn, & Mann 1975) to sample Doppler broadened scattered photon energies
 - Also fixes Rayleigh (coherent) scattering physics with EPDL data
 - Computing performance within 5% of G4LowEnergy classes

- Soon to come: combined polarization and Doppler broadening
Verification of G4LECS

- G4LECS compared to synchrotron beam experiment

Experiment (Polarized Beam)

Simulation (Unpolarized Beam)
Test Results

- Good agreement in Compton and Rayleigh peaks (and Ge-K escape)
- Some differences in multi-Compton continuum probably due to approximated geometry
Application to Compton Telescope Design

Doppler Limit Angular Resolution

![Graph showing FWHM of ARM for different materials and nuclear charge Z.](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>Ge</th>
<th>CdTe</th>
<th>Xe</th>
<th>CsI</th>
<th>NaI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWHM at 200 keV [°]</td>
<td>2.85</td>
<td>3.50</td>
<td>3.30</td>
<td>2.95</td>
<td>3.00</td>
</tr>
<tr>
<td>FWHM at 500 keV [°]</td>
<td>1.25</td>
<td>1.55</td>
<td>1.45</td>
<td>1.25</td>
<td>1.40</td>
</tr>
<tr>
<td>FWHM at 1000 keV [°]</td>
<td>0.65</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Telescope Design Study Example

Si + CZT multi-scatter Design

Angular Res. (FWHM, deg)

Energy (keV)

$E^2 \cdot$ Sensitivity (keV·cm$^{-2}$·s$^{-1}$)

Energy (keV)

100×100 cm2

No Doppler

BATSE

COMPTEL

New Design

1 Msec

100 cm

actsim@lanl.gov