Evidence for Live Iron-60 in Meteorites

S. Mostefaoui*, G. W. Lugmair, P. Hoppe, and A. El Goresy
Max-Planck-Institute for Chemistry
Mainz, Germany
Early solar system evolution

Nucleosynthesis

First solid objects

Production + injection of short lived radionuclides ($T_{1/2} \sim 1$ to ~ 100 million years): time interval (condition: already present at the time of solids formation) \Rightarrow METEORITES
Short lived radionuclides

- **Some chronometers for dating events during early Solar System history:**
 - ^{53}Mn, ^{26}Al: time resolution < 1 Ma (e.g. Lugmair & Shukolyukov 1998; Mostefaoui et al 2002).

- **Heat sources for planetary differentiation:**
 - ^{26}Al: established $\Rightarrow (T_{1/2} = 0.7$ My).
 - ^{60}Fe: $(T_{1/2} = 1.5$ My); not much explored (phases with high Fe/Ni rare, analytical limitations).

^{60}Fe-^{60}Ni isochron in Chervony Kut (eucrite); in “troilite”: ^{60}Ni-excess up to 5‰ \Rightarrow live ^{60}Fe in the early solar system (Shukolyukov & Lugmair 1993).
1- To what extent can the Fe-Ni system be considered a reliable chronometer?

2- Was ^{60}Fe a potential heat source inducing planetary melting & differentiation? To what extent?
Principle

\[\alpha, \beta, \gamma \]

\[\text{Closed system (crystallization):} \]

\[P_0 : \text{quantity of parent element at time } t = 0 \]

\[P(t) = P_0 e^{-\lambda t} \]

\[T_{1/2} = \frac{\ln 2}{\lambda} \]

\[D_0 : \text{quantity of daughter element at time } t = 0 \]

\[P_0 + D_0 = P + D \]
$^{60}\text{Ni} = (^{60}\text{Ni})_{\text{Init}} + (^{60}\text{Ni}^*)$

^{60}Fe \rightarrow $^{60}\text{Ni}^*$

half-life: $T_{1/2} = 1.5\text{Ma}$

$(^{60}\text{Ni}/^{58}\text{Ni})_{\text{Now}} = (^{60}\text{Ni}/^{58}\text{Ni})_{\text{Init}} + (^{56}\text{Fe}/^{56}\text{Fe})_{\text{Init}} \times (^{56}\text{Fe}/^{58}\text{Ni})_{\text{Now}}$

$\delta^{60}\text{Ni} \%$

NanoSIMS 0.38218

NanoSIMS
\[
\frac{^{60}\text{Fe}^{/^{56}\text{Fe}}}{\text{phase}} = \left(\frac{^{60}\text{Fe}^{/^{56}\text{Fe}}}{\text{CAIs}} \right) x \ e^{-\Delta t \times \ln(2)/1.5}
\]

\[
\Delta t = \left[\frac{1.5}{\ln(2)} \right] \times \ln\left(\frac{\left(^{60}\text{Fe}^{/^{56}\text{Fe}} \right)_{\text{CAIs}}}{\left(^{60}\text{Fe}^{/^{56}\text{Fe}} \right)_{\text{phase}}} \right)
\]
This work: NanoSIMS study of Fe-Ni isotopes

- Chervony Kut (eucrite):
 - Known to have ^{60}Ni-excesses (Shukolyukov & Lugmair 1993)
 - Its lithology was the result of planetary differentiation
 (analyzed phases: pyrrhotite, pyroxene)

- Semarkona (LL3.0):
 - Highly primitive chondrite (Fe-Ni system undisturbed)
 - Possibility for a better estimate of initial solar system $^{60}\text{Fe}/^{56}\text{Fe}$.
 (analyzed phases: troilite, magnetite)
Pyrrhotite in Chervony Kut

Two types:
- **Pyr-1**: round shape; abundant
- **Pyr-2**: veins; in a shock-melt pocket; rare
Troilite-bearing assemblages in Semarkona

- **Metal-associated troilite**
 - Metal
 - Troilite
 - Magnetite

- **Metal-free troilite**
 - Matrix
 - Troilite

High Fe/Ni
NanoSIMS-50

Characteristics:

- High lateral resolution: 50nm (Cs⁺), 150nm (O⁻)
- High transmission: high ratio of detected/produced ions
- Multi-detection: simultaneous measurement of up to 6 isotopes
NanoSIMS conditions

- **Primary ions**: O\(^{-}\)
- **Ion intensity on sample**: 0.5-1nA
- **Spot size**: ~1-2\(\mu\)m
- **Analyzed isotopes**: \(^{54}\text{Fe}, \, ^{60}\text{Ni}, \, ^{62}\text{Ni} \) (Multi-detection)
- **Mass Resolution**: 4500
- **Standards**: Synth. Fe-Ni alloy; Ni-rich phases on sample;
 St. Carlos oliv.; NBS glass; Synth. troilite.
NanoSIMS ion images of $^{54}\text{Fe}^+$ and $^{60}\text{Ni}^+$ of a troilite assemblage in Semarkona.
NanoSIMS results for metal-free troilite in the matrix of Semarkona

$^{60}\text{Fe}/^{56}\text{Fe} = (1.08 \pm 0.18) \times 10^{-6}$

Errors: 2 sigma

Metal-free troilite formed ~1 Ma after CAIs

$^{60}\text{Fe}/^{56}\text{Fe} = 1.6 \times 10^{-6}$ (CAIs) (Birck and Lugmair, 1988)
NanoSIMS results for magnetite in Semarkona

$^{56}\text{Fe}/^{58}\text{Ni}$

$^{60}\text{Fe}/^{56}\text{Fe} = (1.08 \pm 0.18) \times 10^{-6}$

$^{60}\text{Fe}/^{56}\text{Fe} = (0.14 \pm 0.09) \times 10^{-6}$

Magnetite formation:
At least
~ 4 Ma after troilite

Magnetite: Secondary phase

$\delta^{60}\text{Ni} \%$

Errors: 2 sigma

Magnetite formation: at least ~ 4 Ma after troilite

Magnetite: Secondary phase
60Fe: potential heat source for planetary melting and differentiation.
Proportions of total energies due to decay of 60Fe and 26Al

Asteroid core formation

Time (Ma)

Energy (%)
NanoSIMS results for pyrrhotite and pyroxene in Chervony Kut

\[\delta^{60}\text{Ni} = 1780 \pm 250 \, \text{‰} \]

Pyrrhotite Pyr-2

\[\frac{^{60}\text{Fe}}{^{56}\text{Fe}} = \left(8.6 \pm 4.2\right) \times 10^{-8} \]

Errors: 2 sigma
Summary

- **Metal-free troilite in Semarkona (LL3.0):** resolvable 60Ni-excesses, $\delta^{60}\text{Ni}_{\text{max}} \sim +100\%\text{oo}$.

- **The correlation of $\delta^{60}\text{Ni}$ with Fe/Ni:** live 60Fe in the early solar system (S.S.), $^{60}\text{Fe}/^{56}\text{Fe}_{\text{init}} = 1.08\pm0.18\times10^{-6}$.
 * The troilites formed ~1Ma after CAIs (assuming homog. dist. & 1.6×10^{-6} in SS).
 * 60Fe produced in Supernova & injected into the S.S. shortly before or at its birth.
 * 60Fe a heat source for planetary melting and differentiation, + early volcanic activities.

- **In the Chervony Kut eucrite:** resolvable 60Ni-excesses detected in pyroxene and in two types of pyrrhotite (Pyr-1 & Pyr-2).

- **Pyr-2 veins:** an extreme excess in 60Ni ($\delta^{60}\text{Ni}$ of $\sim+1780\%\text{oo}$), no obvious explanation. More data are needed...