NanoSIMS, the new tool of choice:
$^{26}\text{Al}, \, ^{44}\text{Ti}, \, ^{49}\text{V}, \, ^{53}\text{Mn}, \, ^{60}\text{Fe}, \, \text{and more}$

P. Hoppe, U. Ott*, and G. W. Lugmair
Max-Planck-Institut für Chemie, Mainz

Astronomy with Radioactivities IV
Kloster Seeon, May 26, 2003
NanoSIMS 50

• Commercial ion microprobe from Cameca with significant input on instrument design from research groups at Washington University, St. Louis, and MPI für Chemie, Mainz

• Installation at Washington University in February 2001 and at MPI für Chemie in May 2001

• Instrumental features:
 – High lateral resolution (down to 50 nm for Cs\(^+\) primary ions)
 – High sensitivity for secondary ions (30x higher for O as compared to IMS3f ion microprobe)
 – Simultaneous detection of up to 6 isotopes
The Early Solar System

I. Extinct radioactivities: Early Solar System history
II. Stardust: Stellar astrophysics
I. Extinct radioactivities: Early Solar System history

<table>
<thead>
<tr>
<th>nuclide</th>
<th>$T_{1/2}$</th>
<th>occurrence</th>
<th>reference nucl.</th>
<th>\sim ratio</th>
<th>pref. process</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Be</td>
<td>53 d</td>
<td>CAIs</td>
<td>9Be</td>
<td>up to 10^{-2}</td>
<td>spallation</td>
</tr>
<tr>
<td>10Be</td>
<td>1.5 Ma</td>
<td>CAIs</td>
<td>9Be</td>
<td>10^{-3}</td>
<td>spallation</td>
</tr>
<tr>
<td>26Al</td>
<td>0.7 Ma</td>
<td>mostly CAI</td>
<td>27Al</td>
<td>5×10^{-5}</td>
<td>H burn.</td>
</tr>
<tr>
<td>36Cl(?)</td>
<td>0.3 Ma</td>
<td>carb. chondr.</td>
<td>35Cl</td>
<td>1.4×10^{-6}</td>
<td>s (?)</td>
</tr>
<tr>
<td>41Ca</td>
<td>0.1 Ma</td>
<td>CAI</td>
<td>40Ca</td>
<td>1.5×10^{-8}</td>
<td>s (?)</td>
</tr>
<tr>
<td>53Mn</td>
<td>3.7 Ma</td>
<td>widespread</td>
<td>55Mn</td>
<td>$1-2 \times 10^{-5}$</td>
<td>NSE, Si burn., spall.</td>
</tr>
<tr>
<td>60Fe</td>
<td>1.5 Ma</td>
<td>HED meta</td>
<td>56Fe</td>
<td>4×10^{-9}</td>
<td>s, n-rich NSE</td>
</tr>
<tr>
<td>92Nb</td>
<td>36 Ma</td>
<td>widespread</td>
<td>93Nb</td>
<td>2×10^{-5}</td>
<td>p</td>
</tr>
<tr>
<td>107Pd</td>
<td>6.5 Ma</td>
<td>iron met.</td>
<td>108Pd</td>
<td>2×10^{-5}</td>
<td>s,r</td>
</tr>
<tr>
<td>129I</td>
<td>16 Ma</td>
<td>widespread</td>
<td>127I</td>
<td>1×10^{-4}</td>
<td>r</td>
</tr>
<tr>
<td>146Sm</td>
<td>103 Ma</td>
<td>widespread</td>
<td>144Sm</td>
<td>7×10^{-3}</td>
<td>p</td>
</tr>
<tr>
<td>182Hf</td>
<td>9 Ma</td>
<td>widespread</td>
<td>180Hf</td>
<td>1×10^{-4}</td>
<td>r</td>
</tr>
<tr>
<td>244Pu</td>
<td>81 Ma</td>
<td>widespread</td>
<td>238U</td>
<td>7×10^{-3}</td>
<td>r</td>
</tr>
</tbody>
</table>
Extinct 26Al in ordinary chondrites (I)

- In-situ study of Mg-Al-isotopic systematics in plagioclase in Ste. Marguerite and Forest Vale ordinary chondrites
- High Al/Mg makes plagioclase suitable samples for the search of now extinct 26Al ($T_{1/2} = 0.7$ My)
- Location of grains by automatic EDX imaging
- Small beam diameter allows to exclude abundant small pyroxene inclusions from analyses
Extinct 26Al in ordinary chondrites (II)

- High Al/Mg ratios of up to 15,000
- Measurement errors of several permil
- Excesses in 26Mg of up to 2% relative to solar Mg
- Correlation line with slope 1.6×10^{-7} ($\Delta T_{\text{CAI}} = 6$ My)
- 26Al widely distributed in the early solar system
Extinct 53Mn in Orgueil carbonates (I)

- Study of Mn-Cr isotopic systematics in separated carbonates from Orgueil
- High Mn/Cr makes carbonates suitable samples for the search of now extinct 53Mn ($T_{1/2} = 3.7$ My)
- Information about aqueous activity on parent body
- Mineralogy:
 - Breunnerite ($\text{Mg(Fe,Mn)(CO}_3)_2$)
 - Dolomite ($\text{CaMg(CO}_3)_2$)
- Small beam diameter allows to exclude Cr-rich inclusions from analyses
Extinct ^{53}Mn in Orgueil carbonates (II)

- Large $^{55}\text{Mn}/^{52}\text{Cr}$ ratios of up to 50,000
- Large ^{53}Cr excesses with $^{53}\text{Cr}/^{52}\text{Cr}$ ratios of up to 2.3x solar
- Breunnerite and dolomite form slightly different isochrons ($\Delta T = 1$ My)
- Bulk Orgueil ($^{53}\text{Mn}/^{55}\text{Mn}$)$_0$ $\leq 2 \times 10^{-5}$, i.e., $\Delta T \leq 10$ My; early aqueous activity on Orgueil parent body
Extinct 60Fe in Semarkona troilite (I)

- Study of Fe-Ni isotopic systematics in metal-free troilite grains in Semarkona
- High Fe/Ni makes troilites suitable samples for the search of now extinct 60Fe ($T_{1/2} = 1.5$ My)
- Questions to be addressed:
 - Time of troilite formation
 - Was 60Fe a potential heat source for planetary melting?
Extinct 60Fe in Semarkona troilite (II)

- Large 56Fe/58Ni ratios of up to 30,000
- 60Ni excesses of up to 10%
- Fe-Ni data plot on an isochron with $(^{60}$Fe/56Fe)$_0 = 1.1 \times 10^{-6}$
- In CAIs, 60Fe/56Fe = 1.6×10^{-6} (Birck and Lugmair, 1988), i.e., troilite formed ≈ 1 My after CAIs
- With $(^{60}$Fe/56Fe)$_0 > 10^{-6}$, 60Fe must be considered a significant heat source for planetary melting
II. Stardust: Stellar astrophysics

Presolar SiC X grains

- SiC X grains are a rare type of presolar SiC
- Isotopic signatures: Excesses in ^{12}C (most grains), ^{15}N, and ^{28}Si, large amounts of ^{26}Al and presence of ^{44}Ti (some grains)
- Type II SN are the most likely stellar sources
Si, 44Ti, and 49V in Type II SN

- The isotopic signatures of X grains point to deep mixing in SN ejecta
- 28Si excesses require contribution from inner Si/S zone
- Presence of radiogenic 44Ca (from decay of 44Ti, $T_{1/2} = 60$ a) and 49Ti (from decay of 49V, $T_{1/2} = 330$ d) expected in X grains
44Ti in presolar SiC X grains (I)

- 37 X grains studied with NanoSIMS for Si- and Ca-Ti-isotopic compositions
- All X grains have lower than solar $^{40}\text{Ca}/^{28}\text{Si}$
- 7 X grains show large excesses in ^{44}Ca ($^{44}\text{Ca}/^{40}\text{Ca}$ is up to $\approx 6x$ solar) that can be attributed to the decay of 44Ti
^{44}Ti in presolar SiC X grains (II)

- Inferred initial $^{44}\text{Ti}/^{48}\text{Ti}$ ratios of up to 0.3
- Negative correlation between $^{29}\text{Si}/^{28}\text{Si}$ and $^{44}\text{Ti}/^{48}\text{Ti}$
^{44}Ti in presolar SiC X grains (III)
Spatial Distribution

localized, correlated with ^{48}Ti
49V in presolar SiC X grains (I)

- 7 X grains studied for Ti-V-isotopic compositions
- All X grains exhibit enrichments in 49Ti
- Except for 47Ti there is a good agreement between the X grain data and the predictions from a SN mixing model
49V in presolar SiC X grains (II)

- V/Ti varies by 3x
- 49Ti/48Ti correlates with V/Ti: Evidence for extinct 49V
- Good match between grain data and SN model predictions
- Grain formation several months after SN explosion
The NanoSIMS 50 is a new type of SIMS that opens new research windows in planetary sciences and astrophysics (spatial resolution, sensitivity !)

First NanoSIMS studies:
- Search for the decay products of short-lived radioactive nuclides (\(^{26}\)Al, \(^{53}\)Mn, \(^{60}\)Fe) in meteorites
- Investigation of isotopic homogeneity in \(\mu\)m-sized presolar SiC and Al\(_2\)O\(_3\) grains
- Search for now extinct \(^{44}\)Ti and \(^{49}\)V in presolar SN grains
- In-situ search for presolar oxides/silicates in meteoritic thin sections (Thursday !)