Modelling Nucleosynthesis in Massive Stars

Thomas Rauscher
University of Basel
Switzerland
Outline

- Evolution of Massive Stars (General)
- How to Model Nucleosynthesis
- Sample Results
- Isotopic Yields and Their Dependence On...
 - Stellar Evolution (+ Nuclear Physics)
 - Stellar Evolution and Explosion Energy
 - Explosion Mechanism
- (r-Process)
Stellar Evolution

Life Cycle of a Massive Star

Supernova
Black Hole
Neutron Star
Recycling
Nebula

Red Supergiant
Life of a Massive Star

- Stars with $M > 8M_\odot$ experience all burning stages: H, He, C, Ne, O, Si core- and shell-burning \Rightarrow type II supernova (explosive burning)
 - $8M_\odot \leq M \leq 10M_\odot$: degenerate late burning
 - $M > 10M_\odot$: normal burning

- Details of stellar evolution and nucleosynthesis depend on stellar mass
 (and on $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$)

- Final state: Neutron star
 (black hole?)
net nuclear energy generation (burning plus neutrino losses) in erg g$^{-1}$ s$^{-1}$

<10$^{-12}$ <10$^{-11}$ <10$^{-10}$ <10$^{-9}$ <10$^{-8}$ <10$^{-7}$ <10$^{-6}$ <10$^{-5}$ <10$^{-4}$ <10$^{-3}$ <10$^{-2}$ <10$^{-1}$ 0

net nuclear energy loss (burning plus neutrino losses) in erg g$^{-1}$ s$^{-1}$

total mass of the star (reduced by mass loss due to stellar winds)

convective envelope (red supergiant)

H shell burning

He shell burning

C shell burning

O shell burning

convection

semi-convection
Dependence on $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$
How to Model Nucleosynthesis

- In principle, 3D hydro necessary to follow convection, mixing and explosion
- Problems:
 - Coupling to reaction networks (energy generation, nucleosynthesis)
 - Explosion
- Compromise:
 - 1D hydro + reduced energy generation network
 - mixing length theory, convection criteria (Ledoux, Schwarzschild, semi-convection)
 - Parameterized explosion
- Nevertheless, mostly reliable nucleosynthesis expected (for nuclides independent of expl. mech.)
Parameterized Explosion

- **Thermal Bomb**
 - Thermal energy deposited in Fe core (T^\uparrow)
 - Mass cut chosen to reproduce 56Ni
 - Nomoto et al. 1997, Thielemann et al. 1996,...

- **Piston**
 - Kinetic energy induced by inward-outward motion of „piston“
 - Mass cut implicit, energy chosen to reproduce either explosion energy or 56Ni

- **Radiation Domained Shock approximation (RDA)**

- **Innermost high entropy layers (r-process)** cannot be described by these procedures
Nucleosynthesis in Massive Stars
($M > 10M_\odot$)

- First Calculation with large network
- Pop I, all burning phases + explosive nucleosyn.
- No r-process zones!
- Param. explosion
- >1000 hydrodyn. zones
- 5 stellar masses
- Tests of different rate sets
- Basis for studies of galactic chemical evolution

Rauscher et al. 2002 (with UCSC and LLNL)
The Full Network

Rauscher et al. 2002 (with UCSC and LLNL)
Nucleosynthesis Results (15 M☉)

- 16O is indicator
- Mostly hydrostatic burning
- 62Ni overproduction?!
- „weak“ s-process component

Rauscher et al. 2002 (with UCSC and LLNL)
Overproduced:

^{23}Na, ^{40}K,

^{46}Ca, ^{62}Ni
Nucleosynthesis Results (15 M☉)

Rauscher et al. 2002 (with UCSC and LLNL)
Explosive Nucleosynthesis

- Li, Be, F from ν-burst
- Ti-Fe by high n-flux
- γ-Process (depending on mass/stellar structure)

Rauscher et al. 2002 (with UCSC and LLNL)
Dependence On Explosion Energy (25 M_{\odot})

Ratio: H/L

- L: $0.1\, M_{\odot}\, ^{56}\text{Ni} (1.735\times10^{51}\, \text{ergs})$
- H: $0.2\, M_{\odot}\, ^{56}\text{Ni} (2.293\times10^{51}\, \text{ergs})$
Nuclide Classes

Yields determined by:

- **Stellar evolution only (hydrostatic + explosive burning)**
 - Depending on progenitor mass
 - Sensitive to structure, mixing, rotation, rates
 - He, C, O, Ne, Mg; ^{26}Al, ^{59}Co, ^{56}Fe

- **Stellar evolution + explosion energy**
 - Weakly progenitor mass dependent
 - Si, S, Ar, Ca

- **Explosion mechanism**
 - Depending on mass cut, size of Fe core
 - Also depending on explosion energy, Y_e
 - Fe-group, also including Ti (^{44}Ti, $^{56,57}\text{Ni}$); r-process!?
Some Key Reactions

- $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$: very important, determines C/O, stellar evolution, collapse and explosion; required accuracy < 10%
The Reaction $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$

Boyes, Heger & Woosley 2002
Some Key Reactions

$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$: very important, determines C/O, required

$^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$, $^{22}\text{Ne}(\alpha')^{26}\text{Mg}$, $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$: 2nd largest

Stellar evolution, collapse and explosion; required

Current uncertainty, neutron source for weak s-process

Current uncertainty; current uncertainty is a factor of 2

Accuracy $> 10\%$
(\(\alpha, n\))/(\(\alpha, \gamma\)) Branching at \(^{22}\text{Ne}\)

Ratio of results with \(^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}\) and \(^{22}\text{Ne}(\alpha, \gamma)^{26}\text{Mg}\) rates varied within experimental uncertainties. The branching ratio determines the production of the weak s-process component, because the neutron source is \(^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}\).

Rauscher et al. 2002 (with UCSC and LLNL)
Some Key Reactions

- $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$: very important, determines C/O, stellar evolution, collapse and explosion; required accuracy < 10%
- $^{22}\text{Ne}(\alpha,\gamma)^{26}\text{Mg}, ~^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$: 2nd largest uncertainty, neutron source for weak s-process component; current uncertainty is a factor of 2
 - $^{59}\text{Fe}(n,\gamma)^{60}\text{Fe}$: 60Fe decay can be observed with INTEGRAL, no experimental value!
 - $^{62}\text{Ni}(n,\gamma)^{63}\text{Ni}$: (+other Ni) Overproduction, no data in relevant energy range!
Multi-D Nucleosynthesis

(Have to assume explosion)

1. Nuclear burning zones are non-spherical
 - Different explosive nucleosynthesis?

2. Ashes of burning are mixed BEHIND the front
 - Different observational signature
Further Contributions On Modelling

Details

- Rotation and ^{26}Al synthesis in metallicity-poor stars: Meynet, this afternoon
- Explosion mechanism: Fryer, this afternoon
- Multi-D nucleosynthesis: Travaglio, this afternoon
- R-process: Pfeiffer, Kratz, Tuesday afternoon
- P-process: Kajino, Tuesday afternoon
- S-process: Gallino, Wednesday morning

+ many observations and data!

Thanks to the organizers and have a good conference!